API Reference

API Reference#

dask_flood_mapper.flood.decision(bbox, datetime)#

Bayesian Flood Decision

Classify Sentinel-1 radar images by simple Bayes inference into flood (1) and non-flood (0). Besides radar images, this algorithm relies on two other datasets stored at the Earth Observation Data Centre For Water Resources Monitoring (EODC); harmonic parameters based on a fit on per land pixel timeseries and the projected incidence angle of the measurement. The latter two datasets are required to calculate the land and water likelihood distributions, respectively.

Parameters#

bboxtuple of float or tuple of int

Geographic bounding box, consisting of minimum longitude, minimum latitude, maximum longitude, maximum latitude

datetime: string

Datetime string:

  • A closed range: “2022-10-01/2022-10-07”

  • Whole month, year or day: “2022-01”

  • Open range with current date: “2022-01-01/..”

  • Specific time instance: “2022-01-01T05:34:46”

Returns#

flood decision : xarray.DataArray of 0 (non-flood) and 1 (flood)

See also#

probability

Examples#

>>> from dask_flood_mapper import flood
>>>
>>>
>>> time_range = "2022-10-11/2022-10-25"
>>> bbox = [12.3, 54.3, 13.1, 54.6]
>>> flood.decision(bbox=bbox, datetime=time_range).compute()
sigma naught datacube processed
harmonic parameter datacube processed
projected local incidence angle processed
<xarray.DataArray 'decision' (time: 8, y: 1048, x: 2793)> Size: 187MB
array([[[nan, nan, nan, ...,  0., nan, nan],
        [ 0.,  0.,  0., ...,  0., nan, nan],
        [ 0.,  0.,  0., ...,  0., nan, nan],
        ...,
        [nan, nan,  0., ...,  0.,  0.,  0.],
        [nan, nan,  0., ...,  0., nan, nan],
        [nan, nan,  0., ..., nan, nan, nan]],
    ...
       [[nan, nan, nan, ..., nan, nan, nan],
        [nan, nan, nan, ..., nan, nan, nan],
        [nan, nan, nan, ..., nan, nan, nan],
        ...,
        [nan, nan,  0., ...,  0.,  0.,  0.],
        [nan, nan,  0., ...,  0., nan, nan],
        [nan, nan,  0., ..., nan, nan, nan]],
    ...
       [[nan, nan, nan, ..., nan, nan, nan],
        [ 0.,  0.,  0., ..., nan, nan, nan],
        [ 0.,  0.,  0., ..., nan, nan, nan],
        ...,
        [nan, nan,  0., ...,  0.,  0.,  0.],
        [nan, nan,  0., ...,  0., nan, nan],
        [nan, nan,  0., ..., nan, nan, nan]],
    ...
       [[nan, nan, nan, ..., nan, nan, nan],
        [ 0.,  0.,  0., ..., nan, nan, nan],
        [ 0.,  0.,  0., ..., nan, nan, nan],
        ...,
        [nan, nan, nan, ..., nan, nan, nan],
        [nan, nan, nan, ..., nan, nan, nan],
        [nan, nan, nan, ..., nan, nan, nan]],
    ...
       [[nan, nan, nan, ...,  0., nan, nan],
        [ 0.,  0.,  0., ...,  0., nan, nan],
        [ 0.,  0.,  0., ...,  0., nan, nan],
        ...,
        [nan, nan,  0., ...,  0.,  0.,  0.],
        [nan, nan,  0., ...,  0., nan, nan],
        [nan, nan,  0., ..., nan, nan, nan]]])
Coordinates:
* x            (x) float64 22kB 12.3 12.3 12.3 12.3 ... 13.1 13.1 13.1 13.1
* y            (y) float64 8kB 54.6 54.6 54.6 54.6 ... 54.3 54.3 54.3 54.3
* time         (time) datetime64[ns] 64B 2022-10-11T05:25:01 ... 2022-10-23...
    spatial_ref  int64 8B 0
Attributes:
    _FillValue:  nan
>>>
dask_flood_mapper.flood.probability(bbox, datetime)#

Bayesian Flood Probability

Classify Sentinel-1 radar images by simple Bayes inference into a probability of flood, ranging from 0 (minimum probability of flood) to 1 (maximum probability of flood). Besides radar images, this algorithm relies on two other datasets stored at the Earth Observation Data Centre For Water Resources Monitoring (EODC); harmonic parameters based on a fit on per land pixel timeseries and the projected incidence angle of the measurement. The latter two datasets are required to calculate the land and water likelihood distributions, respectively.

Parameters#

bboxtuple of float or tuple of int

Geographic bounding box, consisting of minimum longitude, minimum latitude, maximum longitude, maximum latitude

datetime: string

Datetime string:

  • A closed range: “2022-10-01/2022-10-07”

  • Whole month, year or day: “2022-01”

  • Open range with current date: “2022-01-01/..”

  • Specific time instance: “2022-01-01T05:34:46”

Returns#

flood probability : xarray.DataArray ranging from 0 (0% estimation of flood) to 1 (100% estimation of flood)

See also#

decision

Examples#

>>> from dask_flood_mapper import flood
>>>
>>>
>>> time_range = "2022-10-11/2022-10-25"
>>> bbox = [12.3, 54.3, 13.1, 54.6]
>>> flood.probability(bbox=bbox, datetime=time_range).compute()
sigma naught datacube processed
harmonic parameter datacube processed
projected local incidence angle processed
<xarray.DataArray 'probability' (time: 8, y: 1048, x: 2793)> Size: 187MB
array([[[1.86211960e-01, 2.15371963e-01, 2.05863488e-01, ...,
     2.52572128e-01, 2.57730876e-01, 2.44652898e-01],
    [1.28253888e-01, 1.51311120e-01, 1.72076672e-01, ...,
     3.41533329e-01, 3.02598322e-01, 2.72460141e-01],
    [1.07656028e-01, 1.07656028e-01, 1.43597848e-01, ...,
     2.92728749e-01, 2.91336553e-01, 2.25547046e-01],
    ...,
    [3.30095422e-01, 3.00706753e-01, 3.38240209e-01, ...,
     4.56804879e-03, 3.38973420e-03, 1.06926495e-02],
    [3.32022998e-01, 3.39287332e-01, 3.61899104e-01, ...,
     2.65790544e-04, 5.72882888e-04, 4.91604904e-04],
    [3.26255229e-01, 3.24131583e-01, 3.31034180e-01, ...,
     1.42086512e-03, 5.99092039e-04, 3.18391829e-04]],
...
   [[           nan,            nan,            nan, ...,
                nan,            nan,            nan],
    [           nan,            nan,            nan, ...,
                nan,            nan,            nan],
    [           nan,            nan,            nan, ...,
                nan,            nan,            nan],
...
    [           nan,            nan,            nan, ...,
                nan,            nan,            nan],
    [           nan,            nan,            nan, ...,
                nan,            nan,            nan],
    [           nan,            nan,            nan, ...,
                nan,            nan,            nan]],
....
   [[3.73245925e-01, 3.48150842e-01, 3.51988605e-01, ...,
     4.23590506e-01, 4.06161145e-01, 4.00064362e-01],
    [3.75232243e-01, 3.30142918e-01, 3.09075590e-01, ...,
     3.78596082e-01, 3.95209483e-01, 3.92170382e-01],
    [3.30411323e-01, 3.30411323e-01, 4.13602532e-01, ...,
     3.89603260e-01, 4.04806821e-01, 4.92500567e-01],
    ...,
    [4.82000282e-01, 4.95535115e-01, 4.80515991e-01, ...,
     1.02485531e-02, 3.87479773e-03, 4.40659361e-03],
    [5.10606062e-01, 5.15671724e-01, 4.71831786e-01, ...,
     3.71247499e-04, 2.30112900e-04, 2.16098949e-04],
    [5.17821688e-01, 5.59295596e-01, 5.43262041e-01, ...,
     3.05140177e-03, 5.17321966e-04, 2.79084525e-04]]])
Coordinates:
* x            (x) float64 22kB 12.3 12.3 12.3 12.3 ... 13.1 13.1 13.1 13.1
* y            (y) float64 8kB 54.6 54.6 54.6 54.6 ... 54.3 54.3 54.3 54.3
* time         (time) datetime64[ns] 64B 2022-10-11T05:25:01 ... 2022-10-23...
    spatial_ref  int64 8B 0
Attributes:
    _FillValue:  nan
>>>