Local Flood Mapping#
In the context of this notebook we referred to “local flood mapping” as performing the computation on you own machine, as opposed to remote processing which will be explained in the next notebook.
We will begin by loading the flood
module from the dask_flood_mapper
. You could use the default Dask settings, but it is often good to fine tune te settings to you machine’s specifications. We can do this by setting the Dask scheduler through the Client
of dask.distributed
.
from dask_flood_mapper import flood
from dask.distributed import Client
Here we set the Dask Scheduler with the Client
, where we avoid inter-worker communication which is common for working with numpy
and xarray
in this case.
client = Client(processes=False, threads_per_worker=2, n_workers=1, memory_limit="12GB")
client
Client
Client-32ec02fa-0b3d-11f0-87f6-00224804924a
Connection method: Cluster object | Cluster type: distributed.LocalCluster |
Dashboard: http://10.1.0.77:8787/status |
Cluster Info
LocalCluster
31bd2758
Dashboard: http://10.1.0.77:8787/status | Workers: 1 |
Total threads: 2 | Total memory: 11.18 GiB |
Status: running | Using processes: False |
Scheduler Info
Scheduler
Scheduler-5239a49c-98ec-4df1-9d25-9bcfe195f708
Comm: inproc://10.1.0.77/2038/1 | Workers: 1 |
Dashboard: http://10.1.0.77:8787/status | Total threads: 2 |
Started: Just now | Total memory: 11.18 GiB |
Workers
Worker: 0
Comm: inproc://10.1.0.77/2038/4 | Total threads: 2 |
Dashboard: http://10.1.0.77:37761/status | Memory: 11.18 GiB |
Nanny: None | |
Local directory: /tmp/dask-scratch-space/worker-x0dymlaq |
No we are ready to map a flood. As an example we use here storm Babet which hit the Danish and Northern coast of Germany at the 20th of October 2023 Wikipedia. We target an area around Zingst at the Baltic coast of Northern Germany.
time_range = "2022-10-11/2022-10-25"
bbox = [12.3, 54.3, 13.1, 54.6]
fd = flood.decision(bbox=bbox, datetime=time_range).compute()
fd
sigma naught datacube processed
harmonic parameter datacube processed
projected local incidence angle processed
<xarray.DataArray 'decision' (time: 8, y: 1048, x: 2793)> Size: 187MB array([[[nan, nan, nan, ..., 0., nan, nan], [ 0., 0., 0., ..., 0., nan, nan], [ 0., 0., 0., ..., 0., nan, nan], ..., [nan, nan, 0., ..., 0., 0., 0.], [nan, nan, 0., ..., 0., nan, nan], [nan, nan, 0., ..., nan, nan, nan]], [[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], ..., [nan, nan, 0., ..., 0., 0., 0.], [nan, nan, 0., ..., 0., nan, nan], [nan, nan, 0., ..., nan, nan, nan]], [[nan, nan, nan, ..., nan, nan, nan], [ 0., 0., 0., ..., nan, nan, nan], [ 0., 0., 0., ..., nan, nan, nan], ..., ... ..., [nan, nan, 0., ..., 0., 0., 0.], [nan, nan, 0., ..., 0., nan, nan], [nan, nan, 0., ..., nan, nan, nan]], [[nan, nan, nan, ..., nan, nan, nan], [ 0., 0., 0., ..., nan, nan, nan], [ 0., 0., 0., ..., nan, nan, nan], ..., [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], [[nan, nan, nan, ..., 0., nan, nan], [ 0., 0., 0., ..., 0., nan, nan], [ 0., 0., 0., ..., 0., nan, nan], ..., [nan, nan, 0., ..., 0., 0., 0.], [nan, nan, 0., ..., 0., nan, nan], [nan, nan, 0., ..., nan, nan, nan]]]) Coordinates: * x (x) float64 22kB 12.3 12.3 12.3 12.3 ... 13.1 13.1 13.1 13.1 * y (y) float64 8kB 54.6 54.6 54.6 54.6 ... 54.3 54.3 54.3 54.3 * time (time) datetime64[ns] 64B 2022-10-11T05:25:01 ... 2022-10-23... spatial_ref int64 8B 0 Attributes: _FillValue: nan
Since flood.decision
does not make a distinction between Sentinel-1 observations over land or over sea, we need to mask pixels over water. For the example here we will load a mask distributed along with this package. But in general this step is left to the user’s own discretion.
from importlib.resources import files
import xarray as xr
data_text = files("dask_flood_mapper.data").joinpath("wcover.tif")
wcover = xr.open_dataarray(data_text, band_as_variable=True)
fd = fd.where(wcover != 80)
fd
<xarray.DataArray 'decision' (time: 8, y: 857, x: 1716)> Size: 94MB array([[[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], ..., [nan, nan, nan, ..., 0., 0., 0.], [nan, nan, nan, ..., 0., nan, nan], [nan, nan, nan, ..., nan, nan, nan]], [[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], ..., [nan, nan, nan, ..., 0., 0., 0.], [nan, nan, nan, ..., 0., nan, nan], [nan, nan, nan, ..., nan, nan, nan]], [[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], ..., ... ..., [nan, nan, nan, ..., 0., 0., 0.], [nan, nan, nan, ..., 0., nan, nan], [nan, nan, nan, ..., nan, nan, nan]], [[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], ..., [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]], [[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], ..., [nan, nan, nan, ..., 0., 0., 0.], [nan, nan, nan, ..., 0., nan, nan], [nan, nan, nan, ..., nan, nan, nan]]]) Coordinates: * x (x) float64 14kB 12.3 12.3 12.3 12.3 ... 13.1 13.1 13.1 13.1 * y (y) float64 7kB 54.6 54.6 54.6 54.6 ... 54.3 54.3 54.3 54.3 * time (time) datetime64[ns] 64B 2022-10-11T05:25:01 ... 2022-10-23... spatial_ref int64 8B 0 Attributes: _FillValue: nan
Now we are ready to view our results. We use here hvplot
to create an animation of the flood’s extent over time.
import hvplot.xarray
fd.hvplot.image(
x="x",
y="y",
rasterize=True,
geo=True,
tiles=True,
project=True,
cmap=["rgba(0, 0, 1, 0.1)", "darkred"],
cticks=[(0, "non-flood"), (1, "flood")],
frame_height=400,
)
WARNING:param.Image00418: Image dimension(s) x and y are not evenly sampled to relative tolerance of 0.001. Please use the QuadMesh element for irregularly sampled data or set a higher tolerance on hv.config.image_rtol or the rtol parameter in the Image constructor.
WARNING:param.Image00418: Image dimension(s) x and y are not evenly sampled to relative tolerance of 0.001. Please use the QuadMesh element for irregularly sampled data or set a higher tolerance on hv.config.image_rtol or the rtol parameter in the Image constructor.
client.close()